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1 \INTRODUCTION

During 1982-P3 work progressed on four separate fronts

corresponding to both experimental and computational aspects of

turbulent flow in 1P00 bends for both square and round tubes.

The year saw the completion of work on the square sectioned

bend and Mr. R.W. Johnson's PhD thesis documenting in great detail

3 the research accomplished will be circulated within two months.

Here, therefore, In Section 2 only a short summary will be given.
Appendix 1 includes a paper by Chang, Humphrey, Johnson and

Launder [1] reporting the outcome of the computational work
reported at the 4th Turbulent Shear Flows Symposium in Karlsruhe.

The computational work on flow in circular sectioned duct's

[ has also reached the stage of publication [2,3,4] and copies of

these papers are also appended to supplement the summary of

[ computational and experimental research given in Section 3.

Finally, Section 4 outlines the work now underway to bring th/

project to completion. /
/[ /

K 2 SQUARE SECTIONED BEND 13X j 284

2.1 Experimental program A

2.1.1 Apparatus and Instrumentation The design and construction

E of the apparatus was described In some detail in last year's

Annual Report 44 The radius of the bend was 3.35 times the duct

hydraulic diameter (D.), the width of the duct walls being AP.9

mm. Up to 70 hydraulic diameters of flow development were

available prior to the bend but the main emphasis of the

experiments was directed at the case of 31 Dg which corresponded
with the conditions at which the UC Berkeley flow field data had ,es

been taken., (In fact, no major differences in fow or thermal or
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behaviour in the bend i self arose from the variation in the

length of development) ownstream of the bend 40 hydraulic

diameters of instrumented straight ducting allowed the effects of

decaying secondary flow to be studied. F

Heating was provided by electrically-heated Intrex

sheeting, a gold film deposited uniformly on a plastic substrate.

The sheets were cut to size and affixed to the inside of the duct

with the gold film on the surface exposed to the airstream.

Variations in resistivity of the Intrex were found to be within

8% of the mean provided material from near the edges of the roll
was discarded. In use a certain amount of ageing was evident and
when local non-uniformities became serious the sheets were removed

and replaced by new material.

I Thermocouple measurements at up to 9 stations recorded wall

temperatures at 12 positions around one half of the perimeter

(the flow being nominally symmetric about the surface passing

through the centre of the duct and lying in the plane of the

j bend). Temperatures were also measured at 3 positions on the

opposite side of the duct to provide symmetry checks. The maximum
wall temperature was limited to 30°C above ambient to limit the

rate of deterioration of the Intrex sheeting and to keep the

variation in air properties to unimportant levels. A rake

carrying 13 chromel-alumel thermocouples allowed measurements of
the temperature field over the duct cross section at the same

positions as the wall temperatures were recorded.

[The ducting was encased in expanded polystyrene insulant to

a thickness of 40 mm.

2.1.2 Test Program Measurements of wall and interior

temperatures and heat fluxes were made at a Reynolds number of

54700 corresponding to that of the Berkeley experiment. Moreover,

although Professor Humphrey's group were responsible for

gru



I3
documenting the flow field [i], some limited velocity-field

measurements were judged necessary at UMIST to establish that our
flow conditions were indeed sensibly the same as at Berkeley (this

I verification acquired further importance as it was found that the
numerical computations exhibited a strikingly different flow

I pattern midway around the bend from the measurements). Velocity
profiles were obtained by hot-wire traverse 5 diameters upstream

I of the bend and at 900 .

The remaining tests were made with 70 diameters of inlet
flow development in order to establish essentially fully-developed
conditions at entry to the bend. Limited temperature and

Ii velocity-field data were taken at the same Reynolds number as the
earlier test; these indicated no significant variations in flow
structure. In the limited time available attention was mainly
directed at obtaining data on heat transfer coefficients over as

-~ wide a range of Reynolds number as possible rather than focusing
on a very detailed mapping of the interior temperatures at one
Reynolds number. Data were thus obtained at nominal Reynolds

I numbers of 9 x 3 and 9 x 10".

2.1.3 The Experimental Results Figure I compares Berkeley and
UMIST measurements of streamwise velocity at 90 around the bend.
A striking feature of the Berkeley measurements was the double
peak in streamwise velocity (a feature that neither their nor our

computations reproduce). The velocity data obtained at UMIST
confirm this feature of the Berkeley experiments. The small

L differences between the two sets of readings could well be due to

a positioning error in the UPIST data. (Our original intention

had been to take only a single bottom-to-top traverse along the

mean radius of curvature but, to allow more direct comparison with

f the Berkeley data, which were obtained from side-to-side

traverses, rather rudimentary adaptations were made to allowi traverses at other radii). It was concluded therefore that we
could assume that the flow-field in the UMIST apparatus was indeed

0
*0
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essentially the same as documented in the geometrically similar
I half-scale Berkeley apparatus.

Temperature profiles across the duct are shown for 450, 900

1350 and 1800 in figure 2. These mimic closely the corresponding

velocity profiles. For example, by a50 the "peaku temperature

U (actually the coolest point in the stream) has shifted right of

centre, while at 900 there is a deep trough in the temperature in

just the same position as the trough in velocity shown in figure

1. The remains of these troughs are still clearly present at l35°

and are faintly visible even at 1800.

The development of the Nusselt number around the bend is

shown in figure 3. Up to entry to the IAO° section the Nusselt
number is nearly uniform along all walls. By 450, however, the

level of Nu on the inner line of symmetry has fallen by 25% while

the average level has risen by about 10%. By 90 there is more

than a 2:1 ratio in the Nusselt numbers recorded on the inner and
outer symmetry planes. This ratio remains nearly constant over

* the second half of the bend though the absolute level of Nu
diminishes slowly. There remains a significant difference in heat

transfer coefficient even i0 diameters downstream of the bend, the

heat transfer coefficient on the outer bend wall being 10-50%

higher than on the inner wall. Throughout, the heat transfer

coefficient on the side wall follows closely that on the outer

wall.
I.

I 2.) Computational Program

2.2.1 Numerical and Physical Model The computer program
embodying a three-dimensional semi-elliptic solving scheme for the

O averaged equations of motion was provided by Professor Humphrey.

It is based on the discretizational and programming strategy of

U the TEACH family of computer codes save that convective transport

B

g
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I is h.re represented by quadratic upstream weighting [7] . The

code incorporates as alternatives the k-e Boussinesq viscosity

and the algebraic stress models of turbulence, both of which

utilize the standard transport equations for the turbulence energy
* and its dissipation rate C,

I The effort at UMIST initially consisted of a very thorough

re-checking of the algebraic and-coded forms of the transport[ equations for the flow-field variables. This exercise proved very

useful in establishing confidence that what was inevitably a large

and complex code was free from coding error.

Thereafter the computer program was adapted to incorporate

I" a new wall-function treatment for the viscosity-affected zonea.

between the near-wall node and the wall itself [R]. A further

adaptation was the inclusion of the streamline-curvature

modification to the transport equation fore(9] proposed on the

basis of two-dimensional flows. Further details are given in ref.

[1]appended. A solving routine was also included for the thermal

energy equation. Since the fluid properties were taken as

independent of temperature; this equation was solved only after a

converged solution had been obtained to the velocity field.

2.2.2 Comparison of Computed and Measured Behaviour Initial[computations were made using a 70 x ]7 non-uniform grid to map the

cross-section of the duct with ]in streamwise planes, go of which

were located on the bend itself (i.e. a 10 spacing). The nodal
density was subsequently refined to 15 x 20 in the cross-section

while over the first ASO of the bend computational planes were

spaced at 14 ° intervals. These refinements, while leading to
changes up to a maximum of I(! in the secondary flow, had only a

very weak effect on the streamwise velocity profiles.

OThe situation regarding computations can most effectively

be conveyed by reference to the 900 plane (ref.[l] in the Appendix

shows further details). From figure A it is evident that the

I-
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I large trough in the streamwise velocity shown by the experiments

is not reproduced by the computations. There are unfortunately no

I data between the 4R° and 900 stations but the computations seem to

indicate that the trough has arisen through the secondary velocity

separating off the inside wall somewhere between these two

stations thus giving a secondary recirculation, figure S, in the

3 opposite sense than usual. It must be said however that

measurements at 900 show no sign of such a reversed eddy so this

explanation remains tentative. The behaviour shown in figure 4 is

nearly the same as that obtained at Berkeley by Chang [10] using,

in both cases, the k- Boussinesq viscosity model. The relative

insensitivity of the results to grid refinement and to the choice

of wall function suggests that the poor predictions are mainly due

to the turbulence model used in the main flow region. Yet it is

found [1] that very little effect resulted from introducing the

[ curvature correction to the transport equation or from adoptinq

the algebraic stress model. Although Mr. Johnson has now

concluded his research, Professor Young Don Choi, an academic

visitor mentioned in the footnote, continues to address the

problem.

[
3 ROUND SECTIONED DUCT

3.1 Experimental Program

Ii The experimental work on the round sectioned duct has

greatly benefited from extensive interaction with Professor J.W.I
Baughn of the Mechanical Engineering Department, University of

California Davis. We concluded that the attainment of a

uniform-heat-flux boundary condition was impracticable for this

particular geometry and so the apparatus design has been based on

I a uniform wall temperature rig. The IPn 0 bend section has been

fabricated in two halves (figure 4) machined from solid blocks of

i . luminium. The ratio of bend radiusipipe diameter is the same as

t Current wok at UKIST by Professor Young Don Choi with twice as many cross-
sectional nodes and M0 more streiase planes has led to only minor improve-
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for the square sectioned duct, 1.15:1. Inlet and outlet tangent
I sections each AO diameters in length made of high-grade aluminium

tubing are installed. At the downstream end of this assembly,
I connection is made to the flow-metering section and fan exhaust

used for the square duct experiment.

3 Heat transfer rates to the duct wall are to be obtained by
heat flux meters based on the design of Professor Baughn and oneE of his students at UC Davis, ref.[1]] . The holes into which the
meters will be cemented are clearly visible in figure 9. A sketch

I of the meter is shown in figure 7. The principle of operation is

that heat is supplied via resistors to the flat metal cone at a
I rate that is just sufficient to keep the cone temperature the same

as that of the pipe. At present a prototype meter has been built
and is undergoing testing.I

I 3.2 Computational Program

I 3.2.1 Numerical Solution Procedure In the 19PI/R2 Annual Report
we reported that a semi-elliptic procedure for flow through

toroidal ducts had been developed and showed its successful

I application to one of the laminar, flow cases of Agrawal, Talbot
and Gong [12] at a Dean number of IPI. During 19P?/3 the[ procedure has been applied to duct flows at successively higher

Dean numbers and this has pointed the need for further

L refinements.

[ An important step has been the replacement of the SIMPLE

algorithm by the more recent SIMPLER procedure, Patankar [13] The
former approach, while successful enough when curvature terms were

moderate, did not succeed in procuring convergence as the Dean
number was successively raised. Details of how SIMPLER has beenE implemented in the present semi-elliptic scheme ave given in
reference [7] and [3] contained ip.the Appendix.,I

I

I I i II I i , . . .
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A numerical refinement of a different kind has been

I prompted by the problem of computing turbulent flow. Because of

the very strong secondary flow that is generated close to the

wall, it was felt strongly desirable to discard the habitually

used wall-function approach and instead carry out the integration

to the wall itself. However, there was insufficient core

I available to us to add the further ten or so radial lines needed

to resolve thi viscous and buffer reqions . The problem was

removed, however, by recognizing that across the region where

viscous effects were significant, the pressure variation would be

i adequately obtained from assuming radial equilibrium. In a semi-

elliptic solver it is the pressure that limits the mesh density

because only this variable requires three-dimensional storage.

L Thus, we put in additional velocity nodes across the near-wall

sublayer but no corresponding nodes for the pressure. Further

L details may be found in (4] in the Appendix.

The computations for turbulent flow have so far adopted the
standard k-c Boussinesq viscosity model in the fully turbulent

L region matched to the Van Driest form of the mixing length

hypothesis across approximately the 5% of the flow nearest to the

wall. Further details are given in ref. [I] in the Appendix. In

L solving the thermal energy equation to predict heat transfer

coefficients, a uniform turbulent Prandtl number of n.0 Is adopted

[throughout the pipe.

E 3.2.2 Examples of Applications Although the main interest in

the project is in turbulent flow, a thorough testing of the

r computational scheme for laminar flow was felt desirable in view

L of the several sets of data available. In continuation (from our

19R1/R2 report) of the study of the Agrawal data [ ] figure 1

compares streamwise velocity profiles at two sections for a Dean

number of 543. The computations started at the entry to the bend

with a uniform inlet velocity assumed. The grid employed was
20 x 20 x 100. Close aqreement is displayed between the computed

H and measured behaviour. A further case examined was that of

Kt
IIn the present work this region is spanned with the mixing length hypothesis.

More than 10 nodes would probably be required if a more elaborate closure
were adopted.[I-
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Enayet et al [14] in a 900 bend with a radius:diameter ratio of

I only 2.8:1 giving a Dean number of 464. In this case the bend was

preceded by a straight entry section and, as a result, at entry

the boundary layer thickness was about 0.5 times the pipe radius.

The higher Dean number and the presence of relatively thick

boundary layers leads to a stronger secondary flow being

established. Figure 9 indicates, however, that a satisfactory

numerical simulation is nevertheless obtained.

Enayet et al [14] also measured the development of

turbulent flow through the same duct and our computations of

" streamwise velocities in this flow are shown in figure 10.

1 Agreement is now less complete than for the laminar flow case and,

. in particular, the trough in the velocity profile at 9O and 750

is only qualitatively predicted. Nevertheless, the measured

behaviour is simulated far more satisfactorily than for the square

sectioned duct discussed in Section 2.

Computations of the heat transfer behaviour are provided in

ref. 4 in the Appendix. Comparisons with the experiments of

Seban and McLaughlin [15] of fully-developed flow in a coil

suggest that our scheme predicts accurately the rise in the

circumferentially averaged heat transfer coefficient but that the

augmentation on the outside of the bend is underestimated as is

[ likewise the damping around the inside. This is qualitatively the

type of behaviour to be expected with a Boussinesq-type model

since it does not mimic the great sensitivity to streamline

curvature that real turbulence displays. The thermal field

computations of the 2.P:1 90o bend of Enayet et al [1h] indicate a

five-fold variation of local heat transfer coefficient around the

bend at 750 .  The experiment was purely concerned with the flow

field - no heat transfer was involved - but, on the basis of the

comparison with the Seban-McLaughlin data, it would seem probable

that in that geometry as mu.ti as a ten-fold variation in heat

transfer coefficient may actually occur between the inside and

U outside of the bend.
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IA Future Work

I 4.1 Experimental Research

The principal experimental work concerns the commissioning

of the circular-sectioned tube apparatus. First tests on the

assembled rig will begin during April 19P4. The initial testing

will be concerned with the in situ performance of the heat flux

meters, tested in the straight entry section agafnst well-

established data of developing flow in a circular tube. The

pattern of experiments will be similar to that in the square-

. sectioned duct: a detailed set of measurements of wall flux and a

mapping of the temperature field at the same Reynolds number as

the Berkeley circular tube experiments. Some limited confirmatory

velocity field data will also be gathered. Thereafter wall flux

data will be obtained at the extremes of Reynolds number

accessible to the fan.

!" Looking further ahead (further than the period covered by

the present grant), we will aim to obtain from the two lsn ° bend

1. apparatuses several additional sets of experimental data. These

will include explorations where the flow entering the bend is

essentially at uniform velocity and studies at the low-Reynolds-

number end of the turbulent regime where partial laminarization

may occur in passage around the bend.

J.2 Computational Work

Ii Our present efforts are directed at incorporating an

algebraic stress model into the circular bend code. There is

reasonable optimism that useful improvements in the fidelity of 7.

the computer simulation will result. The lingering doubt concerns

the fact that, when included in the square duct code, the

algebraic stress model did not produce better results. Against

G this discouraging fact, however, may be set many striking

0 /



successes (recorded in the literature of the last ten years) from

I applying algebraic stress models to curved flows. Moreover, in

contrast to the fairly satisfactory prediction of the

round-sectioned q9o bend with the k-. Boussinesq viscosity model,

the square-sectioned duct predictions with the same turbulence

model go completely wrong beyond VP of arc. Our current view is

that the poor accuracy of predictions in the square sectioned duct

is mainly due to weaknesses in the dissipation rate equation.
I Over the remaining period of the grant Professor Choi's efforts

will be directed at improving this aspect of the modelling.

I
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APPENDIX I

TURBULENT MOMETUM AND HEAT TRANSPOT IN

FLOW THROUGH A 1800 
BEND 0F SQUARE CROSS-SECTION

S.M. Chang J.A.C. Humphrey LW. Johnson B.E. Launder

Department of Mechanical Engineering, University of Manchester Institute of
Univessity of California, Berkeley, Science A Technology,

USA. Manchester, England.

* .

ABSTRACT in which only the pressure field is stored over the full
dom in (Pratap and Spalding. 1975) and, necessarily,

The paper reports flow and heat trsngfer predictions streamuise derivatives in the momentum equations are
of turbulent flow in passage around a 180 square- discarded. All but McDonald's and Moore's studies
sectioned bond. The numerical results are obtained from employed the same mathematical model for the turbulent
a finite-volume discretization of the sem--lliptic form stress field - the k-c Boussinesq viscosity model. Yet
of the Navier Stokes and energy equations. The turbulent the flow patterns predicted by these schemes bear only a
stresses are represented by the k-c Boussineq viscosity qualitative resemblance to each other or, for that
model both in its standard form and with a streamline matter, to the experimental data. The fully three-
curvature correction. Serious differences betveen dimensional discretizatons have of necessity to use a
experiment and prediction exist for both form and coarse grid which has severely limited the numerical
suggestions are made for their origin. Beat transfer accuracy available. The semi-ellipcic schemes which have
computations indicate that from 45 - 1800 the secondary allowed 80 or more streamise planes (not all, of
flow provokes at least a 2:1 circumferential variation course, in the bend itself) achieve somewhac better
in hest transfer coefficient around the duct perimeter overall agren met with data.
and chat differences of 4OZ between the mean heat The computations of Moore and Moore (1983) and
transfer coefficient in each wall persist at least 10 McDonald (1983) extend through the viscous sublayer to
diaicers downstream. the wall allowing a better numerical resolution of the

near-wall region than the k-t treatments (which apply
! 80gUCTlO:: "wall functions" to bridge the 5 of the flu. nearestthe wall). This fine-grid approach was also followed in

the work of Coustsix et &l (1983) for the se conference
Computers and flow solution scheme have developed though they make only a two-dimensional inviscid

to a point where serious numerical studies of convective calculation for the pressure field. The numerical
heat transfer in complex, 3-dimensional flows can now be simplification this brings is consider b' , 4..' a three-
made. But, for turbulent flo., what level of accuracy dimensional marching scheme my be adopt d; *.- view of
can one expect from such a simulation? The question is the poor agreement obtained, hwever, t remains
of great practical interest for if the accuracy can be questionable whether this basis for obtaining the pressure
relied on within the allowable tolerances the cost of is useful in bends of small aspe0t ratio with substantial
computation - typically a few hundred dollars per run curvature. Of course, more uodes near the wall seans
- will often be negligible compared with the cost of fewer elsewhere; moreover, instead of calculating the
getting the information from experiment. This is the dissipation rate c from a transport equation these
question our research on flow around 1800 bends has been groups Obtained it via a prescribed length scale distrib-
addressing. ution - with muth uncertainty a to the appropriate

The 1800 -bond flow has several qualities that ake prescription.it well suited as a bench-mrk test case. It has very In the intervening two years since coputations forstrong practical connections, especially in beat the Stanford Conference were made the authors have coat-

exchangers, yet its topography is relatively simple. inued to give attention to curved ducts but, for reasonsThis simplicity mans that the flow boundry conditions iven e*rliar. to the 1800 bond case.
can be easily and unambiguously reproduced by a eommutor; A detailed mapping of the velocity field by lser
it also ameans that obtaining tolerably accurate maor", o . mwtry has been made at Sezrkley for the curved duct
solutions (whatever my be the frailties of the phyoice) show in figure 1. These dace and preliminary nmerical
is a target within sights - though there may be argint comuttion aru to appear in Chang at &1 (1953). The
about whether it LI yec vit A range. Zt is a more present contribution provides a more refined set ofchallesJgu flow than the 90 bend that provided one of comutations of this flow and examinee the influence of
the test cases at the 1981 Stanford Conference (Iline wall boundary conditions ad turbulence model n the
et 4l, 1961, 1982) because turbulent stresses generated computed flow pattern. It also reports solutions of the
by the strong secdo"y flow hae longer to act an the enthalpy equation thus providing predictions of the
man flow. Moreover, and meet importantly, detailed circumferential distribution of lusselt umber around
experismetal data are available (Chang et &l, 1983) with the duct perimeter.

whieh to drw comparison. 0
Computations of flow around the 90 square-sectioned 2. SgUgAl? OF NUmigICAL Stir

bad adopted for the Stanford Conference have been
reported by Rumphroy et a (1981, YADoald (1982), Doecrihint Differential Equations
AbddZinguid at &

1 
(19 ). odi et lI (982), Moore and The tationary, turbulent, inLompressible flow of

lore (1982) and Chasg at al (1982); the first three fluid through a curved duct of constant rectangular
ey a discretisacion of the full Slvier Stakes ceoss-section is conveniently described through censerv-

e4quaifts, the last two adopt a sami-elliptic formulation ation equations in cylindrical coordinates. With
coordinates x and r mapping the duct cross-section and
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S the angle of progress &lng the duct, the describing U
2 . r"U Vd r"V 1 Z

man flow equations may be written: r 9 6 a
x-momentum " 2r

2'V ( J + V) - r-2(2VO 4 2rvr - W)) - ct 2 c2/k

S(9)UUX + "u + (VrU Px (2vUx " l
U *The empirical coefficients are ssigned the usual values

+ r " , ) -rvV (1) optimised by Launder at al (1973):

c . 0.09; c 1 .i.44; c2 * 1.92; - 1.0; a - 1.22

UV + W. /r + (/r)V r + V Tho smi-elliptic truncation has been applied to allUx r a " r It (VU z z thoe equtions in that tors conaiin second detriv-

sre''2V - 2vV/r2 '2' atives on S are dropped.
The Difference quation end their Solutions

-mentuF e-difference frs of the transport equations

vere derived by integration over discretixed volumes in

4 Wr  VV * /r W /r)W 1 ( - the flow domain following broadly Fratap's (1975)
x r ' 6 " 7r PS Ise)' )z guidelines. As is non customary, the velocity components

-and pressure are stored on a staggered mesh. Strosswise
Sr2 (r 2 (v(r(W/r) r'V 9 ) " 7))r (3) convective transport is approximated by upwind differences.

In the cross-sectional plane, however, both upwind and
continuity quadratic upwind (QUICK) options are included. The

latter scheme devised by Leonard (1979) has been tested
V + V/r + r

1
V * U - 0 (4) by Ran at al (1981) for turbulent floe in a driven

r S • cavity and found to be distinctly better than an upwind

enthalpy approximation. (In fact, so far as the cross-strem
compnents are concerned, the flow around a bend is very

x rr ( T5  ((/a)z - like a driven cavity). The method of implementing the
UTx * ((v/(n " TT scheme in the numrical algorithm is as given by Han at

* I 
&l (1981).

+r r.) T the course of iteration, the adjustments to the
pressure field in response to mess inbalances for the
control volume surrounding each pressure node is

Here U,V and W are I man volocity components in the essentially as proposed in the SfDLE algorithm (Patankar)
X, r, e directions, u, v, etc. are the correspondingly and Spalding, 1972) except that, vith the velocity field
defined Reynolds stresses, T is the man temperature and held on only two successive 0 planes, reorg nizcion is
T the temperature fluctuation. The quantities v. o and required (Pratap. 1975). Ar any x-y plane the U and V
a are respectively the fluid kinematic viscosity, velocity components are solved first. The streamise
density and Prandtl number. The subscripts x. r and S mmsntum equation is solved next to obtain the W velocity
denote partial differentiation with respect to the space (displaced half a cell down-stream as a result of the
coordinate in question. 'staggering') using now values of V and U in the convect-

The turbulent stresses are obtained from the ive terms; finally, perturbations to the pressure field
loussineq stress-strain formula which, in cylindrical are introduced in conjunction with re-adjustumcs to
coordinates, implies: the current-rlane U-V field. This procedure is applied

at all planes beginning at the upstream boundary and
ul -

2
vT Us - . - 2v V - stepping downsrom. ,successively overwriting 'upstream'

r velocities by current values. On completing such a
. . V 4 rV r- LV) pass over the domain the computation starts over again

* v r) at the upstreem end unless the residual error is small
enough that comvrgence is signalled.

- v - VT(U r * V) (6) because the computation as outlined above has had
r It to make extensive use of upstream values (rather than

where, in accordance with the k-c moel current plane values) of velocity in evaluating convection
coefficients sad sources, a certain upscream bias is

vT . c k2/€ (7) introduced into the solution if a purely marching treat-
mnt is followed. For this reason, as the computation
approaches its apparent solution, it is 'necessary to

k being the turbulence energy and c its dissipation introduce iteration on the velocity components at each
race. These quantities are themselves found from trom- step. That is to say, when current plane values hae
port equations solved simultaneously with the man flow been obtained the equations are resolved using current-
variables: values as appropriate in -formins coefficients and

-l .. T source term. Approximately 45 posses were needed,
TAz + Vkr + (W/r)k* 0 - r'(r( T ))r -T ) startig from an asemd uniform pressure field to obtain

converted results; this was deemed to have been achieved

vT(2(92 + V2 + r'AWZ 4 UT V * ir-10 V r_'VrW whan the magnitude of the mos error sumed over every
It y S rx call ofthedmnfell below 12of theentering mea

flow. (Other studies have typically accepted ms
+ a * x-U V, T-V +2+V1err of 0.52 per plae. which is larger byea factor ofr 9 x 0 2 rSo tbha tolerated here).

2_2V r2-V The flow field generated in the duct is syumetric
" )- (Ve s 2h r - V)) - about the aid-plone of the croes-section lying in the

plane of the bond. Computations were thus mcended
over jut ms half of the duct, the troes-ofttioa being

mapped by a lSxz2S interior grid for most of the results

*e yet (r), * +1 v( VT + ~presented here-under with the msh expanding mildly from
Lb c V2 r  C e lch wall. The computations beam sevenhydraulic
aC r s dimater8 upstream of the bend and ex tded 11.S

* c~lvT ((U1 + *, +~1I *,2V2 U 
1
U. rt'Ve) dawantram; this reio* was coersd by a cotal of 117

el y 0 ax OxV Or treinise planes.
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iondar, Conditions the bend while in the experiment the velocity peak is
lng the symtry plane the gradients of all but displaced smwhat towards the outer radius. (It appears

one of the dependent variables were set to zero; the that the experimental masurment of W , the bulk man
value of U, the velocity normal to this plane, ws mde stremwise velocity, may be too low at this positionzero. On the three sides bounded by the duct vail, wall causing all the measured profiles to lie above the prod-functions ver employed to supply appropriate near-wall iction; the differences in shape thgt are present are not
sources and sinks to the various dependent variables, affected by this, however). At 90 the differences arebesides the 'standard' wall treatment habitually employed sore pronounced including the very strong double peak
in codes developed by those associated with the Imperial in the measured stremwise profile and its complete
College school (Launder and Spalding, 1974) a more absence in the predictions. The radial velocity
elaborate version originating in the present york ha; profiles likevise display a sharp peak near the inner
been used. It is an extension of the schemes of Chie-s boundary radius that is not reproduced in the computation.and Launder (1980) and Johnson and Launder (1982). In Similar anomaligs are prosenj at 1150 (the experimental
relation to the present study its most significant data are at 130 ) but by 180 (177 for measurements)
feature is that the vall friction opposing the secondary the stramvise profiles, at any rate, are showing closermotion is obtained independently of the stroomise vel- agreement; the secondary flow is still seriously in
ocitv by nerforminx the integration V -(r /Ueff )dz error, however.

between the vail and the first node. Dy contrast, the Clearly something starts to go quite seriously
IC vail treatment saumos that the resultant near-vail wrong vith the simulation fairly early on in the bend and
velocity parallel to the vall obeys the usual logarithmic a betantially different flow pattern is computed at
law (the stremoise and croes-stream vail stress com- 90 from that mesured. In search of the cause of the
onents are then obtained by resolving appropriately), differences a number of adaptations have been considered.Flow inlet conditios are detailed in the ne The =st recent calculations have benafitted fromsection l significant meash refinemnt in the near-vall region
stncompared with an earlier set (Johnson and Launder 1983)

yet the differences in the calculations are smll compared
3. CMPUTATIONS AND XPRIT CCt ABZD with the differences between measurement and calculation.

The procedure for finding the secondary vail shear stress
sea a particular area of veakness and so a test was madeThe experimental data providing the basis for this where the wall stresses in the x-y plan* were set to zero.

comparison are those reported by Chang at &1 (1983) for This is clearly an incorrect hypothesis but it served to
a duct in which the mn radius of the bend was 3.35 indicate whether wall stress errors could conceivably
hydraulic diameters. The flow entering the bend had account for the largo differences. The largest
developed through a straight entry section of 31 D after difference bet.een the tlo practices ocents at 135 for
being passed through a series of screens to prcut dhich the primry velocit profiles are showa in fiure
shear layer development. Thus, while the flow had not wc the pr ocity pois re shwn iire
become fully developed there was no inviscid core 5. The changes produced by this step slightly improve
remning when tdevloweued the o encd, soe agreement with experiment and along X/D - 0.5 a peak
remanngt hen the floencotred the bored. The in V near the inmer wall is present. Negartheleesexperiments were taken at a bulk Reynolds nuer of 56700. larje differences remain.

A parallel experiment at UNIST is underway which It is well known that the k-c model does not correct-
reproduces, so far as we are able to, the lerkeley test ly capture the great sensitivity of real turbulence to
conditions. The apparatus dimensions are twice those of small amounts of streamline curvature. Although this
the Berkeley rig and since air rather than water is veakness is intrinsic to the use of the boussinesq
employed, velocities need to be increased by a factor of stress-strain relation, for two-dimensional curved flows
8 to maintain the sam Reynolds nmber. While the main it has been found possible to imitate the effect ofoutput from the MfIST study will be convective beat curvature on turbulent shear stresses fairly well by
transfer data it aa served to provide checks on an introducing the following term in place of the sink
unexpected feature of the Rareley masurements. At 90 -c c2 /k in the c transport equation:around the bend their streemiac velocity profile alng
a radial line bad exhibited a pronounced double C

2

maxiam. This feature while meet strongly present on -cc 2 r (1-0.2 Ri)
the plane of syitY was still evident along the line where Ri - (k/cR)2W(W)N is a curvature ichardon number
midway between the symetry plane and the end wall. and R is the local radiu of curvature of ctremline.
Figure 2 compares the laser anmmter profiles reported This is given by u r
by Chang at al (1983) with those obtained with a pair of 1
slant hot wires at UtaST. It is sen that the double- l " ((UVt t )2..(t t W )

2.( t-m 1
peak feature is present in both sets of data; indeed, t t t
there is very satisfactory agreement between the two where Ut I UU+VU y4iz and K I (UW+VzW)
realimatims of this flow.t

Computations were started, as noted, seven In places the secondary velocity field resulting from this
hydraulic diasters upstream of the bend using, as modification was changed by 20%; the effect on the
initial conditions the velocity and turbulence energy scremnrse velocity, however, was nowhere more than 32 and
profiles of Melling and hitela. (1976). The 3 urbulence is thus insignificant compared with the differences here
energ dissipation rate was asigned as: r -k 2/t where in question. This result could have been anticipated for
the31angch scale was asigned as the smiler of one could not expect an empirical 'fix' on one stress
&,,c A time the distance to the nearest wall or .373D component in a two-dimensional shear to be satisfactory
Theformer is consistent with a mixing length varying R for all the stress comonents in a complex three-
as N times the wall distance; the latter impoes a uni- dimensional flow.
fm leng scale at distances o veate then 0.t5Dt from The logical next step in improving the representation
my wall. It is our view that the unceraintis in of the Reynolds stress is the introduction of an algebr-
initial coditions NM no Significant contribution to ac stress model of turbulence (ASH) in place of the
differences between experiment and computation in the boussineq stress-strain relation. Models of this type
bend itself. Zn support of this view, experiments at hae been conspicuously successful in uiicking the
UNIST with a virtually fully developed flo at entry tothe bond Produced treomrLs velocity profiles at 90 °  effects of curvature in two-dinsional shears wihout

the introduction of specially tuned empirical term
only slightly different from theae shown in fig. 2. (e.g. Rodi et &l. 1982). Unfortunately, switching fromThe computed developmnt of the stromwise and a model based on a turbulent viscosity to one where theradial velocity compoments aroud the bend is shown turbulent stresses enter the calculation as sources and
in figure 3 and 4. Serious discrepanciesa tencmu sinks is a severely do-stabilizing departure. At theI
ation t5 the time of writing no converged results have been obtainedpredicted radial velocity on the centrelime is soaeuhat with the QUICK treatment of convection. With the up-too low and, as a result, the stregmie calculated wind schemm, however, couvergence has been achievedprofile at this peaition is biased towards the inside of though largely, we believe, because this approach brings
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its wi fates* dfusi.on to assist stability. end buffer regions the introduction of a very fine
Streamia. velocity profiles grown from these results near-wall grid hae negligible effect on either convergence
"oer on figure 4for the 90 pOsition. The races or storage requiemets.

hypothesis to Gibson and Launder's (1978) second-assmat itive conclusions can be dram from the detailed beat
closure proposals. The Gibson-Launder study which transffer behaviour. However, results very probably live,
considered the case of flow past a single plane vall in their overall pattern, a correct indication of the
included toe representing the effects of pressure effects on heat transfer levels: i.e. at least a 2:1 ratio
reflection frain the rigid boundary . aen there are four of heat transfer coefficients on the outer and inner
walls present end their effect is assmd to be accounted curved walls of the bend; a mean level som 302 higher
for by applying a linear superposition; this extends to then in a straight duct and a strong non-uniformity in
three-dimnsions the usual two-dimsnsional practice. klusselt number persisting at least 10 diinters downr-
It is clear from fig. 3 that the introduction of the stream.

- ASH scheme has brought no improvemenst in accuracy.
somethat the reverse. Based on earlier experiences ASh1DET:1. with the k-c loussiveaq model artificial diffusion
introduced by upwind differencing modifies the The work has been performed at Bereley ad TaIST
streamise velocity typically by amounts similar to the under a collaborative research agreement sponsored by the
difference between the curves representing ASH and k-c US Office of Naval Research through grants ?IR-09 7-440 and
predictions in fig. 4. (and in the se direction). That nl-07-4.49. Additional funds for computations were prov-

£no improvmnts are recorded from adopting this higher- ided to UC3 by the Office of Fossil Energy through DoE
level closure can only be said to be extremly perplex- Contract No. DE-hCO3-76SF00096.
ing. It is hoped that by the tims of the meeting at Thanks are due to Dr. T.Y. Ran who during the early
which this work is forally presented an explanation staes of the work contributed to the develomnt of the
will have emerged. numerical calculation procedure. Miss L. Towers has

The beat transfer behaviour considered in figure 6 prepared the camera-ready typescript.
is that arising from using the Bousainesq k-c model. Authors' naes" appear alphabetically.
The greatest difference between heat transfer rates on
the inside ad outside of the bend initially occurs at REFERZNCES
the centre plane. The secondary flow driving cold

* - fluid towards the outer wall on this plane produces
higher heat transfer levels as is typical of impinge- Abdelmeguid, A.M.,* Goh, S.!. * Ilegbusi, .1. and
wnt conditions. Conversely, on the inside of the bend, Spalding, D.A. 1982 Proc. AMOR-ITTH-Stamford
the fluid adjacent to the wall has arrived there after Conf. on Complex Turbulent Flows, vol. 111, 1521.

travllig reatiely lowy oer aslihtlygreterChang, S.M., Han, T. end Hu~mphrey, J.A.C. 1982.
length (due to the secondary motion). This fluid has Trbulen lowsv o Coat. 137 Cmple
thus been heated considerably move than that neaw the TruetFos o.11 35

outer wall ajhettasrcofiinsrehu Chang, S.M., Ruihray, .T.A.C. and Modavi, A. 1983.
lower. At 45 the ratio of the Nusselt number on the Int.J. Pbysico Cheical Hydrodynamics* (to appear).
two sides is 3:1. This difference diminishes with Cbieng, C.C. and Launder, I.E. 1960.
pasg rudtebn a h eodr n Nun. Beat Transfer 3. 189.pasagearondtheben asth seondry ndpsimary Cousteix, j. et al. froc. AiOSK-UTriM"Stanford
flow patterns become more complex; even at 180 however ConL. on Cmlex Turbulent Flows, vol. 111, 1326.

* the m level of Nusselt number is 602 greater on the
outer than the inner wall associated with the fact that Gibson, N.M. and Launder, B.S. 1978.
the faster moving fluid is located near the outer wall am .Y.,i Mhah. 86, 49.ACanLudeIE 19.
(see fig. 3): this produces higher velocity gradients Hn .. ~he,3AC n aneIE 91
which in turn produce higher kinetic energy level. Com.Meth.Apl Engr. 29. 81. TeG 19.

Downstream of the bend the secondary flow decays Rumhrey, J.A.C., Vhitela',. J.I. e4TO.Gnd91
(the maxima radial velocity is only .02 VS at ten .johFluid McW. 103,ner B.. 9833ep.*p
diameters) though the Nusselt number distribution Johnson, L]L. ntudrI..13.D t.ap
around the duct perimeter remains strongly non-uniform. JosnL)..adLudr .. 18.NmB
The mean level of Nuselt in the bend is soe 302 higher JonnL.adauerIE.12.N .et
than is found in a straight tube at the sem Nuselt Transfer 5, 493.
nmber. Kline, 5.3., Cantwell, 5. and Lilley, G.E. 1981, 1962

(editors) Proc. 1980-81 5101-MTM-Stenford
4. Ucmm m ZN wai Cost.* on Complex Turbulent Flows,* Thetmosciences

Division, Stanford University.
Experimeets under identical flow conditions in our Launder, B.E., Morese, A., loi, W. mad Spalding, D.S.

two institution using different methods of measurement 1973. Proc. 1972 Langley Free Shear Flows Coat.

hae conf irmed that at the 90 position in a square- Aner LI32., ridC..adhaa,.1 197
sectioned U-bead the scremrise velocity displays a Ludr .. rdiCA n hmRI 97

secondary peak near the inner wall. None of our nmri- J.Tluids Engrg. 96, 763.
@al simlations using relatively fine meshes and the Launder, I.E. and rpalding, D.A. 1974. Comp.Moth.
QUICK treatent of convection has succeeded in emick- Appl.mach.Zns. 3. 269.
ing this important flew feature. For the present we Leonard, D.P. 19119. Comp.Mth.Apl.Mach.1agrg.19
cannt offer a coeivincing explanation for this failure: 9

grid ref inement in che croes-seetional plane has had MpDonald, R. 1982. Proc. A1081-ITr-Stamford
little influence wile introducing am ASH apparently Cneec nCmlxTruetFos o.1!Lbrings me benfit. Theire are two steps we propose to 1424.
take that my bring about a marked improvement. The Mlling, A. and Whitelue, 3.1. 1976. J.Fluid Mach.
first is to ceecentrate a for greater peoportioj of the 78, 269.
stremseise calculational plans in the first 90 3of the Moore, J. and Moore, J.G. 1982. Prot. ANWR'1-UT
bend. (The pregaet distribution provides a virtually Stanford Conf. on Cmlex Turbulent Flows, val. III.[I unif am sowing &maud the bend ad only modest 1453.
variations in the upstream ad downstream tangents). Pcecap, S.V. end Spalding, D.A. 1975.

The seed will be to abandon, on the flat walls of the Aero.Quart. 26, 219.
bend, the vall-fuaction treatment. Instead, a fine Bodi, W. 1976. ZANN 56. 219.
mesh will be introduced, to allow computations to be modi. V. at al. 1962.7Proc. A1061-WrtZ-Stamford
carried into the viscous sublayer. In this way unoert- Cost. on Complex Turbulent Flows, vol. 11, 1495.
ainte as to the appropriate wall boundary condition
are removed. Ne have found from parallsl work in the
round-aestimed U-bead that by assumng a radial
equiibuim preegame distribution acres@ the viscous Ir
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INTRODUCTION

The movement of fluid through curved pipes and bends Is of
considerable practical and fundamental interest. It is Well

known that in such flows secondary motions arise in the
cross-stream planes producing a streaMwise flow pattern which may

be far removed from that found in a straight pipe. The secondary

motions can be explained qualitatively in terms of the response

of a viscous fluid element to an Imbalance between the

centripetal acceleration and the cross-stream pressure gradient

Induced by lateral curvature of the main flow; see, for example,

Cuming (1957) and Johnston (1978). In a curved pipe, the result

is a cross-stream or secondary motion carrying fluid

symmetrically along the pipe walls from the outer to the Inner

line of symmetry and along the symmetry plane of the pipe from

the inner to the outer line of symmetry as shown in Figure 1.

Analysis of the equations describing laminar flow through

curved pipes shows that two parameters character ze the flow:

the radius ratio 6 x a/R and the Dean number De 6I:Re, Berger et

al (1983). In the above definitions, a is the radius of the pipe
cross-section, R is the pipe mean radius of curvature, and Re is

the flow Reynolds number W 2a/v where W is the bulk average
velocity through the pipe and v is the fluid kinematic viscosity.

Since the Dean number is equal to the ratio of the square root of
the product of the inertia and centrifugal forces to the viscous

force, it provides a measure of the intensity of the secondary
flow. The radius ratio 6 is a more direct measure of the

influence of pipe geometry on the flow. It affects the balance

Iof inertia, viscous and centrifugal forces. Berger et al (1983)
point out that the Influence of 6 on the flow through curved
pipes is not as well understood as that of the Dean number.

Fully developed flow in curved pipes has been the subject of

extensive research, a review of the subject having recently been
made by Berger et (1983). The more complex entry flow into a

1 curved pipe has been studied far less completely. Theoretical
attempts to solve the problem have been seriously handicapped by

a lack of sureness in the simplifying assumptions underlying the
various analytical approaches. In addition, for fixed 6 and De,

the flow developing in a curved pipe is a function of the inlet

plane boundary conditions and these present some difficulties for

general values of Re; see Stewartson et al (1980) and Berger et

al (1983).

Yao and Berger (1975) and Stewartson et al (1980) have

Investigated the entry flow development problem theoretically for

De>1. In the former case, two sets of equations were derived,

one for the inviscid core flow and the other for the three-

dimensional boundary layer. At the inlet plane zero cross-stream

velocity components and a uniform axial velocity were prescribed.

Along the pipe wall zero-slip, impermeable conditions were

specified. A development of the Karman-Pohlhausen Integral
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method was used to solve the boundary layer equations.

A set of boundary layer equations, equivalent to that of
Yao and Berger, was solved numerically by Stewartson et al, but
core-flow/boundary-layer interactions were neglected. They also
prescribed zero cross-stream velocity components at the inlet
plane, but they followed Singh (1974) in imposing a
potential-vortex condition for the streamwise velocity component.
At any fixed streamwise location, Re, the calculation *sequence
always advanced from * 0 at the outer line of symmetry to

# a 1800 at the inner line of symmetry. Use was made of
preliminary solutions of the flow field for all * when Re z 0 and
all R6 when * x 0. The Keller box scheme was used to solve
partial differential equations for the leading terms in a power
series expansion. The coefficients in the series were obtained
seriatum and the series summed to yield the preliminary
solutions.

Yao and Berger's solution of the boundary layer flow in a
curved pipe predicts that separation of the secondary flow or
circumferential boundary layer will take place at a streamwise
location from the inlet plane of about O.01a(De/6) . The width
of the separation zone, i.e. the distance between * = 1800 and
the point of separation, was found to increase with streamwise
location, tending asymptotically to a maximum value of 540. This
finding is in qualitative agreement with the integral solution
for fully-developed flow obtained by Barua (1963) who predicts a
secondary boundary layer separation at * = 1530 , but does notaccord with either the fully-developed integral solution of Ito

(1969) or the numerical studies of Collins and Dennis (1975) who
do not predict separation. In contrast, and for the first time,
Stewartson et al predict a vanishing of the streamwise component
of skin fr t ction on the inner line of symmetry, 0 = ?r , at R e z
0.943 a/6 . The position of zero shear stress represents a
singularity in their calculations since the shear stress
increases again immediately past the zero point on the inner line
of symmetry. From their study, the authors concluded that the
secondary boundary layers "collide" at * z 1800 forming a radial
Jet which takes fluid from the inner to the outer pipe wall
region along the symmetry plane.

Experimental measurements obtained by Agrawal et al (1978)
using the laser-Doppler velocimeter technique in a transparent
curved pipe with 6 a 1/7 suggest that separation of the
circumferential boundary layer, in the sense predicted by Yao and
Berger, for example, may have occurred by Re a 3.46 a/8 for
De x 138 and by Re = 6.23 a/61 for De = 678. The values 3.46
and 6.23 are considerably larger than those suggested by either
Yao and Berger's analysis (0.12 and 0.26) or the constant 0.943
predicted by Stewartson et al for the position of zero streamwise
shear stress. However, it is interesting to note that for their
higher Dean number Agrawal et al observed a striking modification
of the secondary flow profiles measured in the region of the
Inside of the bend at two stations: Re 31.39 a/al and Re-2.3la/61.
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Although the authors found it difficult to interpret their
results, they associated the phenomenon with some form of
separation.

In an effort to verify the finding of Stewartaen et al,
Talbot and Wong (1982) used an electrochemical techlnique to
obtain the wall shear stress along the inner line of symmetry in
a curved pipe with 6 z 1/7. Measurements were made over the
range 188 4 De < 1622. They found that the wall shear decreased
to a minimum va ue with increasing De, the minimum being located
at Re =n.Qo a/ , in close agreement with the value predicted by
Stewartson et al. Upstream of the minimum the measured wall
shear stress was also in agreement with the predictions by
Stewartson et al, but on the downstream side substantial
discrepancies were found between measurements and predictions.
Berger et al point out that the calculations of Stewartson et al
are inaccurate beyond the singularity on the inner line of
symmetry and must be discounted: further discussion of this point
is given by Talbot and Wong (1q82).

From the above it is clear that several important aspects of
developing curved pipe flow have not yet been resolved.
Analytical methods seeking to model the flow as an inviscid core

interacting with a three-dimensional boundary-layer lead to
asymptotic results that are at variance with numerical
calculations of the fully-developed form of the Navier-Stokes
equations. Analytical models do not yet exist which include the
effect of boundary-layer separation on the inviscid-core flow
and, more importantly, the very existence of separation is still
an unresolved issue.

The arrival of large core digital computers has made
feasible the numerical solution of either the full or some
truncated version of the Navier-Stokes equation. Predictions of
developing laminar flows in curved pipes by three-dimensional
finite-difference procedures have been reported by Patankar et Pl

(lq74), Rushmore (1975), Liu (1976, 1977), Humphrey (1977) and
• Levy, Briley and McDonald (19P3). The procedure of Patankar et

al is based on the boundary-layer equations (with a uniform
streamwise pressure gradient applied over each cross-sectional
plane) and is thus applicable only to pipes with very large
radius ratios. Levy et al also adopt a marching scheme by taking
the pressure field from a potential solution with a bulk
correction applied plane-by-plae to mintin the same mass flow
at any section. While this appears a powerful and economical
approach to apply in the early stages of development, the laminar
flow entry problem was not that of principal interest to these

workers and consequently no extensive Investigation was reported.
Moreover, the approach becomes less accurate when there is strong
interaction between the viscous and non-viscous regions at high
Dean number. The other numerical studies noted above have been
based on d1scretizations of the full Navier-Stokes equations and
share in common the problem of false diffusion arising from the
use (for stability) of upwind differencing with an inevitably

U
I
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I
coarse mesh. As a result flow details, such as small secondary
eddies, tend to be smeared out; none of the studies, for example,
has reported separation of the secondary flow.

The present contribution is aimed at throwing some light on
the various unresolved phenomena discussed above associated with
developing flows in pipe bends. Efforts have been made to reduce
numerical errors to unimportant levels by following Pratap and
Spalding (1975) in using a semi- elliptic rather than a
fully-elliptic treatment (thus permitting considerably finer
meshes than earlier studies), by adopting the third-order
-quadratic upwind differencing of Leonard (1978) (rather than the
usual first-order upwinding) and by removing the numerical

I singularity at the pipe axis. Although numerical resolution is
gradually lost as the Dean number is raised, the results provide
evidence of secondary flow separation - albeit very weak - for De
greater than 500. They also show the occurrence of a minimum
streamwise wall shear stress on the inner line of symmetry. As
the Dean number is successively raised, the minimum value
decreases and occurs at progressively smaller values of RO6I /a
though, even at the highest value of De considered, this
dimensionless position is still approximately twice as far
downstream as predicted by Stewartson's analysis.

During the documentation stage of the present study, the
very recent thesis of Soh (1983) came to our attention. As in
several earlier studies he has used a fully-elliptic
discretization. Despite the resultant coarseness of his
numerical mesh, by using central differencing for convective
transport and by carefully arranging the mesh non-uniformly over
the domain, his results reproduce at least qualitatively a
secondary separation. Comparisons are drawn with Soh's work
wherever possible; the impression is that the differences between
his results and ours are attributable to the finer meshes that
have been possible in the present work.

SUMMARY OF THE NUMERICAL SOLUTION PROCEDURE AND BOUNDARY
CONDITIONS

[The equations describing the development of a viscous fluid
in a toroidal duct such as shown in Figure 1 may be written

L Continuity

r U + rrV + 1rWO 0

* momentum

(C( ) + SC( )) - D() + SD( ) + S ( )

(2)

0o
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In equation (1) U, V and W denote velocity components in the
circumferential ( ) . radial (r) and streamwise directions (8 )
respectively, rc = R + acosO is the local radius from the centre

of the bend, while in equation (2), * stands for any of the
velocity components, the associated source and sink terms being

given in Table 2.1. The operators C(p) and D(W) are defined by

C(*) = (rrc)-I + (rcU*) + (rrcV*) + 2(rWV)c r3 (3)

(*) (rr) [ rcUi r rr 1r (4)

We note from eq (4) that second-derivatives with respect toe
are omitted. In consonance with this form of the describing
equations a 'semi-elliptic' finite-volume discretization is
adopted, a description applied to a solution where only the
pressure field is treated as elliptic. The pressure thus

requires storing over the whole domain. In contrast, the
velocity components are solved in a marching fashion and thus
require values to be held only on two adjacent r-O planes of
nodes. This type of solution procedure, first introduced by
Pratap and Spalding (1975), is particularly attractive in
three-dimensional flows for then the savings in memory required
for the velocity components (compared with a fully elliptic
soluti&n) may allow a sufficiently fine mesh to be used for the
pressure field to reduce numerical errors to unimportant levels.
The present numerical procedure has broadly followed the strategy
of Pratap and Spalding, but several differences in discretization
and organization have been introduced to improve the numerical

accuracy of the results. Quadratic upstream interpolation
(Leonard, 1979) is used to approximate convective transport in
the cross-sectional plane of the duct following the conclusions
of Huang et al (1983) that this was overall the most accurate of
the simple treatments of convection (see also Han et al. 1980).
The pressure/continuity connection is applied by way of
Patankar's (1980) SIMPLER algorithm; in preliminary tests this
was found to give convergence rates an order of magnitude faster
than the earlier and very widely used pressure-correction scheme

SIMPLE, Patankar and Spalding (1972).

In the original semi-elliptic scheme of Pratap and Spalding
I. (1975) no in-plane iterations were made on the velocity field and

thus, of necessity, coefficients of the difference equations were
based entirely on upstream information. Although economical,

this practice proved to be inadequate in the present study which
has incl+uded tighter bends than those examined by Pratap and
Spalding'and where, as a result, streamwise variations are more

rapid. As the pressure field, which was iterated by repeated
streamwise sweeps over the solution domain, approached
convergence, first one and finally two in-plane iterations on the

* velocity field were made with all coefficients being re-evaluated

The Pratap-Spalding study was confined to square sectioned bends
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using the current plane information.

At the highest Dean numbers a significant economy in the
memory required at any cross-sectional plane was achieved by
assuming that the static pressure within a thin annular ring

adjacent to the pipe wall was obtainable from radial momentum
equilibrium. Within this sub-region, which extended from the
wall to 0.9a, the pressure was obtained from the following
degenerate form of the radial momentum equation:

1 - W2cos _ u2

par r r (5)

while the radial velocity V was obtained from the continuity

equation, (4). This parabolic sublayer treatment (PSL) was
originally developed to facilitate the study of complex
turbulent flows (Tacovides and Launder, 1984) but it has also

*proved helpful for the flows examined here since, at entry to the

solution domain, the boundary layer is extremely thin and a fine
near-wall mesh is inevitably required.

There is no intrinsic need for a particularly fine mesh at
the pipe centre. Most earlier numerical treatments, however,
have put radial gradients of all dependent variables to zero at
r = 0 and to keep the harmful consequences of this clearly
incorrect prescription to unimportant levels, a refined grid has
been needed in the vicinity of r = 0. The central difficulty is
that at r z 0 (J a 1) there are many coincident nodes each
corresponding to a different circumferential angle 0 (I). In the
present study, to improve the pattern of node distribution, the
following reformulation has been adopted. For the streamwise
velocity component, W, the same value has been assigned to all
these coincident centre nodes (W(I,1)), this value being the
average value of W over the surrounding nodes:

NI-1

W(I'1) - W(I,2)/(NI-2)

1-2

where I:2 and I- (NI-1) correspond with 0 and ir radians respectively.
The U and V components, however, cannot take the same value at
the centre. Instead, it is required that the resultant of U(1,1)
and V(I,1) should produce the same velocity vector irrespective
of the circumferential location. Now this resultant velocity
must lie on the symmetry axis: its value Vres is obtained as the

mean of the radial velocity components on : 0 and * : w on
either side of the centre nodet The U and V velocity components
for other values of * are then obtained as

D In fact, Vres is the average of V on 0 = 0 and the negative of that on 0 -r

U!
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I
t (I,1) - Vres sine ; V(I,l) = Vres cos

At the tube wall all three velocity components are set to
zero. At the inlet plane the streamwise velocity and pressure
are assigned as uniform over the plane while the other velocity
components are set to zero. At the 0-1800 plane no constraints are
required on the velocity components (which are treated in a
boundary-layer fashion) while the streamwise pressure gradient
has been set uniform over the section at a level needed to
satisfy continuity. This latter condition, while not in accord
with the actual pressure gradient at 1800 (which is affected by

bend-exit effects) has been found to affect the flow pattern only
within 200 of the exit (for 6 = 1/7). None of the comparisons
drawn below relates to a position in the bend greater than 1600
from the entry.

A number of computations reported below have been repeated
several times with different distributions of nodes in the three
co-ordinate directions and with a progressive mesh refinement.
The standard mesh density employed was 20 (radial) x 20 (circum-
ferential, ) x 150 (axial, 8 ) for the pressurep. and for the
velocities 28 x 20 x 2. The difference in the number of radial
nodes for the velocity and pressure fields arises from the fact

I that in the 'parabolic sublayer' pressure nodes are not required
but velocity nodes are.

The computations have been made on a CDC7600 computer at the

University of Manchester Regional Computing Centre. Central
processor time required to proceed from a uniform guessed initial
pressure field to a final converged state where residual mass
errors summed over the entire domain were below 0.1% of the
entering mass flow ranged from LOQOOsfor De x 138 to25000s.for De =
2712 for 6 - 1/7.

[ PRESENTATION AND DISCUSSION OF RESULTS

Comparison is drawn first with two experiments reported by
Agrawal et al (1978), one in a bend with 6 x 1/7 at a Dean number
of 183 (Re z 484) and the other with 6 z 1/20 and De a 565
(Re z 2530). In the experiments, the bend was preceded by a
bell-mouth entry: the computer simulation began with a uniform
streamwise velocity and zero secondary velocities at the entry
plane to the bend (0). It will be seen later from a comparison
with wall stresses that the unavoidable mismatch between the
experimental and computational starting profiles leads to a lag
in the computation by approximately 50 of arc in the case of
6 1/7. Streamwise velocity profiles at representative

I
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stations , 3 shown for these two flows in Figures 2 and 3. Due
to the difference in refractive index between the perspex pipe
and the glycerin-water mixture which provided the working fluid,
experimental velocity traverses were made along the non-parallel
lines indicated in the figures. The numerical data were

it interpolated to extract velocities along the same lines.

Near the bend entry the potential vortex is clearly evident
in each case. For the lower Reynolds number there is some
Indication that the measured boundary layer is a little thicker
than the computed, in part due to neglect in the computations of
any boundary layer at the entry plane. As the -shear flow
develops around the bend, the secondary motion displaces the
velocity maximum to the outside of the bend and, in the case of
the higher Dean number, producing double velocity maxima along
some lines. The computations and the experiments generally
produce a strikingly similar behaviour. The somewhat smaller
distortion of the computed profiles at De 183 and L/R a 7.34
(where L is the distance from the bend entry measured along the
circular path through the pipe centre) compared with experiment
is, we believe, probably due to the thinner computational inlet
boundary layer. Other small differences that a close examination
reveals are probably attributable to the uncertainty in the
measured Reynolds number of ±8%.

The secondary flow data reported by Agrawal et al (1978)
were in fact obtained later than the streamwise velocities and at
different Dean numbers, 138 and 678. Figures 4 and 5 draw
comparisons between the measured profiles and the corresponding

I numerical results. In each case, the secondary flow carries
fluid from, the outside to the inside of the bend near the wall
with a slow return flow over the remainder of the cross-section.

At the higher Dean number (or rather, Reynolds number) the
near-wall current Is confined closer to the wall due to the
thinner streamwise boundary layer and the return flow pattern is
noticeably more complex near the inside of the bend. The
numerical computations mirror the experimental data reasonably
well but not, it must be acknowledged, as well as in the case of
the streamwise profiles discussed above. The predicted near-wall
outer-to-inner flow is thicker than that measured. This

superficially might appear to arise from numerical diffusion but
the QUICK scheme adopted for convection is accurate up to third
order and does not suffer from the severe numerical smearing to
which upwind differencing is prone. Moreover, grid refinement
produced negligible changes in the results at these Dean numbers.
The question thus arose whether the experimental Dean number
could have been different from that reported. Without claimingIi to answer that question it is at least of interest to notice that
in Figure 5 the computed secondary flows at a Dean number twice
that reported experimentally are in significantly closer accord

with the experiment than the reported value of 678. At this
higher Dean number the secondary profiles reflect the weakening
of fluid viscosity through the appearance of secondary maxima and
minima along a number of traverse lines near the inside of the

II
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I
bend. Indeed, the computations at De c 1356 indicate in Figure
5a a reversal of the direction of secondary flow on the symmetry
plane implying the formation of a counter rotating eddy . In the
experiments the secondary velocity on the axis is reduced almost
to zero along two traverse lines in Figure 5c but does not
actually reverse. It may be noted, however, that the measured
secondary velocities appear to suffer from a 'rightward' bias.
That is to say, the secondary flow profiles indicate a mass flow
rate to the right that is from 2 to 6 times larger than that to
the left. If the flow were fully developed In the axial
direction, continuity would require precisely the same rightward
and leftward flow rates along every line drawn from the boundary
to the symmetric plane. Now, the fact that the predicted
secondary profiles do indicate, rather closely, such a balance
suggests that the effects of changes of W in the axial direction
do not make a major contribution. It is thus difficult not to
conclude that the experiments, for whatever reason, have given a
spurious augmentation of the secondary velocity towards the
outside of the bend. Thus it seems probable that the actual flow
does indeed exhibit a secondary flow reversal on the -axis.
Although the computations - even those at De = 1356 - do not
quite show the roller-coaster appearance of the experimental
profiles, in view of the above discussion the agreement is
probably satisfactory. Agrawal et al (1978) speculated that
'separation' of the secondary flow may have occurred at their
data collection point closest to the inside of the bend. In
fact, though one cannot distinguish it in the figure, the
computed wall-adjacent velocities at this position do take very
small negative values as may be inferred from the variation of
circumferential shear stress in Figure 12.

A clearer impression of the secondary flow pattern is
perhaps conveyed in Figures 6 and 7 which show secondary flow
'vectors' at different axial stations for two values of De. At a
Dean number of 138 the pattern of the secondary flow streamlines
changes little as the flow develops around the bend but the
magnitude of the secondary velocities in different regions
changes considerably, the maximum levels being reached at about 6
radii into the bend (500). At De : 678 the initial simple
cellular pattern evolves into a kidney shape by 12.8 radii
downstream with very rapid spatial variations in magnitude and
direction of the secondary flow. In marked contrast with the
situation in Figure 7b, the secondary velocities on the
centreplane are nearly zero. Soh (1983) reports a qualitatively
similar behavious at this Dean number. The behaviour for a DeanL number of 1356 (not shown) is similar to that at 678 except that
the principal return flow is squeezed somewhat closer to the pipe

o
It is interesting to note that Azzola and Huphrey (1984) have measured

such a counter rotating eddy near the syumetry plane for turbulent flow
in a 1800 bend

. , . . .
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boundary leaving a larger core with virtually no secondary

[motion.
It is of interest to return briefly to the streamwise

velocity component to observe how' its isovels are distorted by
i the secondary flow field. Figure 8 presents measured and

predicted contours for a Dean number of 565 at 83 from the bend
entry. Soh (1983) provides computed results for this flow
condition at the same location and his predictions are included
in the figure. The contour plots convey a clear impression of
how the secondary flow (similar to that shown in Figure 60) pulls
out the axial contours as fluid flows along the walls from the
outside to the inside of the bend. Because the bulk of the
return flow also takes place along the periphery of the pipe,
however, the profiles are folded back on themselves forming
hook-like contours or"fingers". The present numerical results
mimic closely the measurements save that the computed fingers are
a little wider. Soh's coarse grid calculations yield contours
for W/W equal to 1.2 and 1.4 enclosing smaller regions of the
flow than either the measurements or the present calculations;
the main features of the flow are nevertheless quite well
predicted.

Figures 9-12 relate to the distributions of wall shear
stress around the inside of the bend, a topic that has been the
main concern in the papers by Stewartson et al (1980) and Talbot
and Wong (1982). Figure 9 shows the development of the axial
wall shear stress along the inner line of symmetry at four Dean
numbers; also included is the behaviour predicted by Stewartson
et al. As discussed in the Introduction, the analysis developed
by these workers gives a vanishing shear stress at Z - e(R/a)? -
0.943 which represents a point of singularity in the solution
since immediately downstream therefrom the shear stress rises
sharply then approaches monotonically an asymptotic value.
Stewartson et al comment that their analysis is strictly
applicable only for very small values of 5 and for De >> 1.
Certainly, as the Dean number is successively raised the present
numerical results shift in the direction of that limit, i.e. the
minimum dimensionless wall shear rate falls as De increases and1as
the minimum value occurs at progressively smaller values of Z
(though even at De z 2712 the minimum is reached about twice as
far downstream as the predicted singular point). Downstream of
the minimum, the numerical solutions display a damped oscillatory
behaviour, the amplitude growing as the Dean number is raised.
This behaviour is evidently in striking contrast with
Stevartson's result, yet is at least in qualitative agreement
with the inviscid analysis of Hawthorne (1951).

It would have been interesting to extend the numerical
results to higher Dean numbers but this was not feasible since to
achieve sensible grid independence for larger De than those
reported would have required finer meshes - and thus more
in-core storage than was available to us. it is of interest to

I
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note the effect of grid refinement on the present solutions.
Figure 10 shows results obtained for the three highest Dean
numbers with the standard 20 x 28 x 150 grid and with a coarser
version: 20 x 20 x 100. At Dean numbers of 678 and 1356 the

changes in shear stress arising from grid refinement are rather

[ small and the trend is generally to raise the shear stress

slightly. The change is more substantial at the highest Dean

number, the minimum shear stress being raised by a factor of 3.

It is ironic that for this last case the coarser grid gives a

behaviour up to the position of minimum shear stress much closer

to that predicted by the analysi-s of Stewartson et al.

Nevertheless, the finer grid solution brings the behaviour at

this highest Dean number much more into line with the numerical

results at lower values of De.

The conclusion that the solution of Stewartson et al did not

adequately describe the flow downstream of the singularity was

originally drawn by Talbot and Wong (1982) on the basis of

experimental shear stress data obtained by an electrolytic
method. Comparisons with these measurements are shown in Figure

11 where the present computational curves are all displaced to
the left a dimensionless distance 0.2 (corresponding to 4.30 of

arc), an arbitrary adjustment to try and account for the effects

of the inlet contraction. For De 678 the computed curve
corresponding to the streamwise wall stress at 8W/9 is also
included to allow comparison with thetresultant stress along this

line measured by Choi et al (1979) . Agreement between the
experimental and numerical results is somewhat mixed. At a Dean

number of 183 the computed values are some 205 below the data,
while at the higher Dean numbers the cluster of data points

around Z = 1.0 give substantially lower values than predicted.
It is hard to ascribe a level of accuracy to the experiments:

the calibration curve from Talbot and Wong suggests that the
stress levels are systematically low by an amount ranging from

15-25% depending on the surface strain rate, though no estimates

of other uncertainties are provided. Apart from the case of theIlowest Dean number the impression conveyed by the data seems to
be that they scatter about the numerical predictions rather than

display conclusive differences. Talbot and Wong inferred from a
comparison of their measurement with those at 8l/q from Choi et

al (1979) that the circumferential wall shear stress at this

position was much smaller than the streamwise stress - a

conclusion which conflicted with the predicted behaviour of

Stewartson et al. The present study provides strong support for

Talbot and Wong's conclusion. The circumferential stress along

8w/9, shown in Figure 12, is an order of magnitude smaller than
[the streamwise component except in the vicinity of its maximum

Because the circumferential stress at this position is small compared with

the axial stress, the resultant stress does not differ from the axial value
.by more than 1%

o
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value. We note that the streamwise variation of this component
is essentially independent of Dean number as far as Z = 1.5.
Moreover, weakly negative values of circumferential shear stress
occur for De z 678 in the range 2.75Zg4.A and for De = 1356 in
the range 3.7SZ55.4. At the highest Dean number the secondary

shear stress remains positive, though close to zero for Z> 4. It
ought to be said that this last result is not conclusively
established since it is possible that a further major grid
refinement, while producing negligible changes to the streamwise
or secondary velocity field, could nevertheless change the
circumferential stress from a very weak negative value to an

equally weak positive value - or vice versa.

CONCLUSIONS

Careful numerical solutions have been obtained of several

laminar flows developing in 1RO ° bends of circular cross-section
that have been the subject of laser Doppler studies by Talbot mnd
his colleagues. Given the small but unquantifiable mismatch
between the computational Pnd the experimental entry conditions,
agreement between computed and measured streamwise profiles for
Dean numbers of 1PI and 565 are in extremely close agreement.
There is less complete agreement with the secondary velocity
profiles and one possibility, that would he consistent with the
present results, would be that the experimental data (which were
obtained in a separate study from the streamwise profiles) were
at a higher Dean number than reported.

The present computational results indicate a gradual
approach towards the initial-region behaviour predicted by
Stewartson et al (1980) as the Dean number is raised. Even at a
Dean number of 2712, however, there are still marked differences
from Stewartson's solution. Downstream of the point of minimum
shear stress on the inside wall the numerical results indicate an
oscillatory development of the streamwise wall stress, the
overshoot increasing as the Dean number is raised. This
behaviour, which is at least in qualitative agreement with the
data of Talbot and Wong (19A2), and inviscid flow calculations of
Sthe secondary flow by Hawthorne (1951), is in striking contrast

with the predictions of Stewartson et al (lqPO) which show a
monotonic approach to steady state conditions.
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APPENDIX 3 1

'The Computation of Momentum and Heat Transport in

j iTurbulent Flow around Pipe Bends

H. Iacovides and B.E. Launder

I
A numerical solving procedure is described based on a semi-
elliptic discretizaticn of the averaged equations of motion
describing turbulent flaw through curved circular-sectioned
tubes. It adopts Leonard's QUICK treatment of onvection
and Patankar's SIMPLER algorithm for handling the pressure-
velocity ronection. Applications are reported of laminar
and turbulent flow in a 900 bend (adopting, in the latter
case, the standard k-e Boussinesq viscosity model for the
flenolds stresses). Solutions of the thermal enertjyI equation for this case indicate a marked rise in the average
heat transfer coefficient at any sectin but with a five-
fold variation in Nu between the inside and outside of the
tube.

1. Introduction

Turbulent flow around pipe bends is a common feature of heat
exchangers, condensers, boilers and other beat-transfer equipment.
!Such flows also arise in the internal cooling passages of various
components of power generation equipment from gas turbine blades
to the rotating cores of electrical generators. Besides the very
complex three-dimensional flow that occurs in the bend itself, the
1secondary flow generated in the bend can carry over to have an
appreciable effect on the velocity and temperature fields many

- diameters downstream.

Despite the importance of. the flow, little is known of the1.• detailed structure in the turbulent flow regime. For the most
part, studies have reported overall pressure-loss coefficients for
'bends of different angles and different ratios of pipe diameter to
bend radius. Exceptions are the measurements of mean velocity by
Rowe (197n) in a rather gentle 180 bend and the recent experiment
of Enayet, Gibson, Taylor and Yianneskis (1982) which reports theI;development of the mean and rms turbulent streamwise velocities
around a 'tight' 900 bend (pipe diameter: mean radius of curvature

= 2.8:1). There are no local heat transfer data available, so far

,as we know, in the development region of a circular sectioned
"pipe, though a joint programme of experiments on both the flow and
;thermal fields is now in progress at 11MIST and the University of

fi Callfornia, Berkeley (Professor J.A.C. Humphrey).

The advance in speed and core capacity of computers, coupled
!with improvements in numerical methods for solving the fluid flow

:equations, make it feasible to undertake computer simulations of
three-dimensional flows; these can provide far more detail of the
velocity and thermal fields than could any experimental

- --f-.-. -. . -...-.l*- -.. -
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"iealization of the-same-flow7 Whether or. not the resulting
calculations provide i close approximation of the real flow
!depends on how small the computor has been able to keep his
numerical error and on how well the unknown turbulent momentum and'
heat fluxes are represented by the 'turbulence model' adopted. In:
the case of developing turbulent flow around pipe bends, the first.
-computations were reported by Pratap and Spalding (1975). The
paper introduced a novel simplification of the full
three-dimensional Navier Stokes equations in that, while the fully
elliptic form of the pressure equation was retained, a parabolic
itruncation was adopted for the velocity field wherein streamwise
momentum diffusion was omitted. This simplification allowed the
velocity field to be stored on only two adjacent streamwise planes
instead of over the whole domain. The savings in core that such
semi-elliptic schemes allow enables a far finer mesh to be
employed for the pressure field (which must be stored over the
Ifull domain) than would otherwise be possible. Pratap and
iSpalding (1975) achieved moderately good agreement in their
!simulation of Rowe's (1970) experiment, though some of the
;features of their original calculation method are unsuitable for1computing the practically far mort important case of flow around
Isharp bends with R/d in the range 2-4.

Perhaps the most serious limitation of the Pratap-Spalding
scheme for such flows is their use of "wall functions" (c.f.
,Launder and Spalding, 1974), based on experimental data for plane
two-dimensional turbulent flows, to provide the near-wall boundary
conditions on the velocity field. This approach provides an
.unreliable basis for fixing the secondary velocity parallel to thei Wall and it is difficult to conclude other than that the only
'satisfactory treatment is to carry the integration to the wall.
This approach has been adopted by McDonald's group (McDonald,
1982) in computing turbulent flow around a 900 bend of square
cross section as part of their contribution to the 1981 Stanford
Conference on Complex Turbulent Flows (Kline et al, 19R2). The[ results of this computation, while, overall, not superior to those
of other submissions, did nevertheless give a more accurate
account of the development in the first 300 of the bend where
there is a strong secondary flow confined very close to the wall
carrying fluid from the outside to the inside of the bend. The
pumerical procedure developed by McDonald's group obtains the
pressure distribution as a one-dimensional correction to aIi potential flow. This simple approach works very well when the
boundary layers are thin butlappears to be a major factor in the
eterioration in their predictions of the square bend experiment

beyond 450. A further potential source of error is the use of
the very simple mixing-length hypothesis to compute the Reynolds
stresses. The scheme entirely neglects transport effects on
turbulence; moreover, as Levy et al (1983) comment, theIrescription of a boundary-layer thickness - required to fix the
mixing length - becomes arbitrary in such a three-dimonsional,g ~ low.

The present contribution reports our attempts at achieving a
ore satisfactory numerical and physical computational model of
turbulent flow around bends than has hitherto been reported. We
adopt, following Pratap and Spalding (1975), a semi-elliptic.
approach though, like Levy et al (19 A3), we eschew the use of wall
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ifunctions and instead extend the computations to the pipe wall;
'using, in the low-Reynolds-number sub-layer, the Van Driest (195')
version of the mixing length hypothesis. In the main flow,.
however, the k-c€ Boussinesq viscosity model is adopted to allow
Isome account to be taken of transport effects on turbulence.

Extensive comparisons are drawn with the laminar and turbulent
i flow data of Enayet et al (1982) in a 900 bend. We report also

the computed behaviour for the thermal field for this geometry.
Finally, comparisons are drawn with the Seban and McLaughlin
(1963) measurements of local Nusselt number in fully developed
flow through coiled tubes.

2. Summary of the Computational Procedure

1. 2.1 The Describing Equations and Boundary Conditions

The flow is analysed in the toroidal, r, 0, e system shown in
figure 1. If we adopt the Boussinesq turbulent viscosity
concept to represent the momentum and heat fluxes due to the
iturbulent motion, the describing continuity, momentum and.-
energy equations may be written as follows:-

Continuity

*a xU + -Srre + -;-'

(2.1)

Momentum and Energy

0 (C(*) + Sc(v)) C D(*) + Sd(M + S P()

In equation (2.1) U, V and W denote the velocity components in
the 0,r,Odirections, rcis the local radius from the centre of the
bend (R +rcose ), while in equation (2.2) * stands for any of the
velocity components or the temperature. The associated source and
sink terms are given in Table 2.1 and the operators C( 4 ) and D
(') denote:

C()) 2 (rr-[---< rcU*) + L(rrcV*) + (rW4')j

D (1) -= (rr c )  -'3 r c  0p+ r

The quantity o* is unity in all but the energy equation where itJ
denotes the molecular Prandtl number of the fluid. Notice that
second derivatives with respect to 8 are dropped, an essential
feature of semi-elliptic treatments. Where computations are to-be
made in straight approach sections of the pipe or in downstream
tangents, the mean radius of curvature R is set to some suitably
Ilarge value in these regions.

iaIf



1' 4

-S(* S p(0 )(

(r3 u(E 2V) 1- f r Ij !V U)1
ef .E30 rrc3r ce 4

r r3* ff~r z a, r3 eff3

. ! - e ~fa rr2a 3 ef{Uss L(jn*'f -Vcs I-1f 20

CC

ii -Uil -____________

a L U 1. a a

COSW2 7, T# rClfa- (=r) 1-r -(rru c"efT-
r

ap 2u f fau a w
3r -f (- + V) +- -tru eff C)

U2 r 3# r ae. 3r r

* fCO (Usin + VC50 --
r. 2  ae

a~ +
r 38I~w rr 3r 74- f ff ( 8 co-)

C v

re+ 2 e-(i - 2 *n 2 Vcoso )
2 f 38 ~o

(- () +UefCOS r()

liof fsin a U UefIs v

r r

"off + U'

Table 2.3. Source and diffusion terms in uman flow equations
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"1 "Calculati ns-are made or h semi-circular half cross;
Isection bounded by the diametral plane of symmetry passing through[the centre of the pipe bend. The velocity normal to that plane isset to zero, while the gradienta of W and V normal to the plane are:
zero. Along the pipe wall no-slip conditions are applied. The.I velocity components and pressure- are all prescribed at entry to
the flow domain while at exit the second derivative of the static
pressure in the streamwise direction is set to zero; the velocity
and energy equations are only first order in e and no outlet
boundary condition is required.

As described in detail elsewhere (Launder, Johnson and'
racovides, 1983; Humphrey, racovides and Launder, 1984) a new
treatment of the U and V boundary condition at the tube axis has
been evolved in this work that removes the usual singularity
problem. The need for special care arises because the axis
coincides with the location ofmanyU and V nodes each corresponding
to different values of the co-ordinate 0 . Now, since the nodes in
question lie at the symmetry plane, we know that for every such
Mode the resuZtant velocity in the plane of the cross section must
be the same and directed aZong the.symmetry plane - since as noted
in §2.1. there can be no velocity component normal to this plane.J We thus conclude that:

UC11l) - V res sin 0(I)i. V(I,1) - V coo(I)
res (2.5)

I Iwhere Vres is the average radially directed velocity at the axis,

i" Application of these conditions has removed the need for a
very small near-axis cell adopted in earlier treatments (e.g. Levy
et al, 1983).

2.2 The Turbulence Model

Although in the future the authors aim to include a model of
turbulence based'on closure of the stress and heat-flux transport
equations, the present computations all adopt the Boussinesq
concept of an isotropic turbulent viscosity ui ; in the momentumIi I equations a* is unity, while in the energy equition it representsthe turbulent Prandtl number and is assigned the uniform value

0.9.

Li It cannot be said in advance how serious the undoubted
conceptual weakness of such an approach will 'in fact prove to be.

(1 it seemed desirable to us to adopt this. simple hypothesis
U initially since its use facilitates the numerical solution of the

describing equations; moreoever, it will be desirable to have a
'baseline' prediction available against which to judge
computations to be obtained later with more elaborate models of.
the turbulence field.

From the wall extending to a radius of f)-qha - 0.9awherea
jis the pipe radius, the turbulent viscosity is given by the mixing
length hypothesis (Prandtl, 192A) extended to three-dimensional



fISB ,'requiifi-'con~figste-hte-lial equilibrium form of
the turbulent kinetic energy equation. In the near-wall zone,
gradients with respect to r far outweigh other terms and so:It a. 0L 2 r8W2) + fau -U I I

. "~m~t2(.~) (auu2)i(2.6).

that The mixing length IM is given by Van Driest's (195S) proposal

LmaU(L exp U /26v) (2.7)'

where y is the distance from the wall (a-r) and U is the friction:
velocity based on the reauZtant wall shear stress. The von Karman
constant K takes the value of 0.419.

Over the main region of flow the turbulent viscosity is.
obtained from the standard high Reynolds number version of the k-Boussinesq viscosity model (Jones and Launder, 1972, Launder and

Spalding,. 1974) wherein

- t = CpUK2/C (2.8)

'and the turbulent kinetic energy k and its rate of dissipation
:are found from the solution of transport equations of the same
itype as equation (2.2) in which the source/sink terms take the.
following form:_

* Sc() Sd() S p(M

k 0 1tG - PC

0 cl!y iG -c 2.
2

2 Vee UsinOj2 1auV2wher. G S 2 + 2 w + U + 2

l er + rJ
S+ , 3 +u +-a"

The empirical coefficients appearing in the k and tequations take the following standard values.:"

C a .09; C -1.44; C a 1.90; ak - 1.0 ; ac 1.22
1 2



At the interface with the mixing length hypothesis, the values:
of k and c are fixed by requiring that the viscosity given by
equations (2.6) and (2.P) should be the same and by taking the
turbulent length scale 1(=k 312/) equal to /cu 3/C4 as in a simply
sheared, equilibrium, near-wall flow. The resultant expressions;
are

k A / C V1l/ 12 ; e - cO/
t IiU 1

where P is the value of turbulent viscosity given by eq (2.).

2.3 Discretization

The present computational procedure has taken 
as its starting

point a code for solving the fully-elliptic laminar flow equations
in toroidal co-ordinates kindly provided by Professor J.A.C.
Humphrey (Humphrey, 1977). , This had been developed within the
framework of the well-known TEACH family of computer programs.
Like other finite-volume, primitive variable procedures, the
Idifferential equations presented in §2.1 and §7.2 are discretized
by integrating them over small contiguous control volunes which
Itogether cover the whole flow domain. To each control value is
attached a discrete value of the dependent variable. A staggered
arrangement of grid nodes is adopted with velocity components
located at the boundaries of the control volumes for the scalar
Ivariables (p,T,k and c ). We retain the usual TEACH practice of
lassuming a linear variation of dependent variable between nodes in
evaluating diffusion processes while treating source and sink
terms as uniform over each control volume with a value equal to
Ithat at the node.

In the treatment of convection; the upwind/central hybrid
differencing normally incorporated in TEACH is retained only for
the streamwise velocity component W. For the components in the
plane of the cross section, the more accurate quadratic upwind
interpolation (Leonard, 1979) has been incorporated. (See Han et
al, 1981 and Huang et al, 1983 for a comparison of the performance
of quadratic and hybrid differencing).

Pratap and Spalding (1975) adopted the SIMPLE procedure
(Patankar and Spalding, 1972) for use in their semi-elliptic
computations. We have found, however, that the newer scheme
SIMPLER (Patankar, 1980) produced rates of convergence an order of
magnitude faster. The original pressure-velocity iteration
sequence has had to be modified somewhat to allow it to fit

compatibly within the present semi-elliptic treatment with only

the pressure available in three-dimensional storage: (i) TheLi solution begins with a guessed initial pressure field starting

from the initial (upstream) plane and marching plane by plane
downstream. At each step with the pressure field fixed, the U and
V momentum equations are first solved on a plane followed by that
for the W velocity (located one half cell downstream). (ii) The

f' velocity field is next corrected by way of the standard
U pressure-correction equation in order to satisfy continuity.

1(iii) The current plane pressure field is then updated by solving
tthe Poisson~equation for pressure ovr_.the_plane using the updated
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• "1'cI tios. (v)FThe current plane velocity field -is
re-calculated using the updated pressure field. (v) The current
plane velocities and the pressure field on all downstream planes
are adjusted by way of the Pratap-Spaldinq hulk pressure
correction to ensure that the prescribed mass flow rate is passing

that section. (vi) The current plane velocity field is
re-corrected via the pressure-correction equation. (vii) For
turbulent flow, the turbulent kinetic energy and dissipation rate
are solved and the turbulent viscosity is updated.

The above steps are repeated at each succeeding plane and,,
l .when a complete downstream sweep has been completed, the sequence.

begins over again at the upstream plane unless the solution has.
fully converged.

As the calculation approaches convergence, first one and
later two iterations are introduced at each plane in solving the
momentum equations in order to re-form coefficients and source

terms in terms of current plane values. (When marching without
iteration, one necessarily has to evaluate these quantities from
upstream values). Although, apparently, Pratap and Spalding

(1975) did not incorporate such iterations into their
computations, the bend flows considered in their study were far
milder than those of the present study and thus streamwise
variations were less rapid.,,

Within a thin annular ring extending from the wall to n.0-a
a much simpler and economical numerical procedure has been adopted
fin our most recent calculations. The region is treated as a
parabolic sublayer (PSi), lacovides and Launder (3!%P4) in which,
for a given 0 and 8 , the pressure at any point in the sublayer

r" above that at the first node outside the sublayer is obtained by
assuming radial equilibrium. Thus, no pressure nodes are required

*in the PSL, a feature that allows the use of a fine near-wall mesh
for the velocity field without prohibitive core demands (the

~I pressure, it will be recalled, is the only variable for which
three-dimensional storage is needed). A further simplification is
that the radial momentum equation is not solved, the V velocities

* " being obtained directly by application of continuity to the.
I• fcontrol volume surrounding the pressure node.

3. Numerical Results

The computations reported below have been obtained on UMRCC's
I CDC7$00 computer with meshes sufficiently fine that purely

numerical errors are believed to be of minor importance. There
is little scope for establishing grid-independence of three-
Idimensional flows by successive mesh refinement with a computer of
this size and accordingly our attention is directed first at the.
laminar flow results of Enayet et al (39P3) for R/ - 7.P at a
Reynolds number of 1093. The computed results have been obtained
with 20 nodes in the radial (r) and circumferential (8) directions
and with 100 streamwise planes, 70 of which are In the Ono bend
itself and the remainder in the approach and downstream tangents.
A preliminary run was made of developing flow in a straight pipe,
,the flow being allowed to develop until best agreement was
obtained with the 900 bend data at the station 0.5R diameters
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upstream of the bend. The computed profiles obtained in that run
2.4 diameters upstream of that position were then used as the
starting profiles in the calculation proper (i.e. at a position 3
diameters ahead of the 900 bend).

The development of the measured and computed axial velocity
profiles is shown in figure 2 at three stations. Due to
differences in the refractive index of the perspex tube walls and

the fluid, the LDA measurements were made along the non-parallel
I lines shown in the inset; the corresponding computed velocities

along the same lines have been obtained by interpolation.
Agreement between measurement and calculation is generally very

iclose. This set of data has previously been predicted by Levy et
al (1983) using their scheme for correcting, in a one-dimensional
marching manner, the potential flow pressure distribution.
Agreement between their results and the present computations is
close over the first half of the bend, but deteriorates somewhat
towards the flow-exit, presumably because their rather simple
pressure treatment gradually loses accuracy as the shear flow
becomes more tangled. In fact, Levy et al (19P3) report two
regions of flow separation in their computations, one on the
outside of the bend from 0-150 of arc and the other on the inside
from about 800 to the downstream limit of computations (the

1. location of this final plane was not reported). There seems no
suggestion in the experimental data that separation occurred and
in the present computations the minimum value of friction factor
was 57% of that in fully developed flow in a straight tube at the
same Reynolds number and occurred just beyond the 900 position.

The corresponding turbulent flow calculations are shown in
figures 3-5, the experimental data again being due to Enayet et al
(1982) obtained in the same curved duct but now at a Reynolds
number of 4.3 x 104. Computations of the velocities were made on
a 20 x 27 mesh in the cross-sectional plane, the additional seven
nodes being placed in the 'parabolic sublayer'. At the node
adjacent to the wall, a typical value of the normal distance yU_/V1. was 3; thus turbulent stresses were entirely negligible compared
with those due to viscous shear. As with the laminar flow tests,
a preliminary run was made in a straight duct to develop the
boundary layer by the same amount as the experiments indicate.
Streamwise velocity profiles are shown in figure 3. For this
flow, agreement beyond 300 Is not as complete as for laminar flow.
Although the general character of the development is reproduced,
with the accumulation of low momentum fluid on the inside of the
bend, the detailed behaviour, particularly the double peak in the
streamwise velocity on the plane of symmetry at 00 and 750, is
not correctly predicted. (In this region the present computations
give nearly the same behaviour as those of Levy et al (1983) who
have also examined this flow). At one diameter downstream of the
bend, agreement Is significantly improved. Indeed, while the
remarks above have emphasized differencOs between experiment and
computation, it may be noted that the level of agreement achieved
is far superior to that obtained by Chang et al (1983) nasquare
sectioned 1800 bend with the samo turbulence model in the main
flow but where wall functions were used to apply near-wallgboundary conditions.

Typical secondary velocity profiles are shown In figure A.il...l
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The -most-strikingfeature-is-th-Fact- that'the maximum secondary
velocity occurs very close to the wall, well within the region of'
substantial viscous influence. It is this feature that makes the
wall-function approach inappropriate to this type of flow. Thel
streamwise wall shear stress around the inner line of symmetry is
shown in figure S. Due to the combined effect of secondary flow,
and the adverse pressure gradient encountered on exit from the
bend, the shear stress falls to zero (indeed becomes marginally
negative) in the exit region. The present semi-elliptic scheme
can strictly not cope with streamwise separations but the reverse
flow velocities were very weak and confined within the viscous;
region so that no special measures were needed since the;
,troublesome convective terms were negligible. That the turbulent
flow should separate but the corresponding laminar flow should not
is of course entirely contrary to experiences in two-dimensional
flow.

The thermal energy equation has also been solved in this case
for a molecular Prandtl number of 0.7. A uniform heat flux is
applied starting 3 diameters upstream of the bend, the flow
lentering at uniform temperature. As the flow develops around the
bend there is a moderate increase in the average level of the
Nusselt number. Figure 6 indicates that the circumferential
!variation is small over most of the perimeter, but by F0 a strong
!decrease in heat transfer coefficient develops on the inside of
ithe bend due to the fact that the fluid arriving there has been
passing close to the pipe wall as it moves from the outside to the
inside of the bend (cf. figure 4). There is also a small peak in
Nu at the outer line of symmetry, in this case due to the
impingement of relatively cool high velocity fluid. The ratio of
maximum:minimum Nusselt number grows to nearly 5:1 by 750 .  These
Ilarge variations diminish rather slowly on entry to the straight
downstream tangent, the ratio of outer to innerheat transfer
coefficients having fallen only to 4:1 at one diameter beyond the
lend of. the bend.

An even stronger impression of the acrobatic variation of
heat transfer coefficient is conveyed by figure 7 which shows the
Nusselt number variation around the inner line of symmetry. (The
values are normalized by the maximum value in the field which
occurs at the initial station. Since the entering fluid.
I temperature is uniform, the actual value of Nusselt number is of
no physical significance - It depends simply on the distance from
Ithe pipe wall of the near-wall node). The modest rise In Nu at
entry to the bend arises from the initial flow acceleration on the

iL inside of the bend; thereafter the strong decrease indicates the
accumulation of sluggish low-momentum, heated fluid on the inside
transported there by the secondary flow. The whole pattern
closely resembles the variation of wall shear stress shown in
figure 5, save that the Nusselt number does not go to zero withTr.
The minimum in Nu, occurring at the bend exit is, however, lessothan 20% of that at entry to the bend.

At present no measurements of local heat transfer,
coefficients are known for developing flow around pipe bends.
Seban and McLaughlin (]113) have, however, reported such data for
the flow of water in long coils where development lengths arefl sufficient for fully-developed flow to be established. This case



-has-been-simulatedus[ - nly--f6Ur-stre-amiise pressure planes,
Idownstream values being successively transferred upstream until
the flow pattern ceased to change.t The resultant circumferential,
distributions of Nusselt number are compared with the
Seban-McLaughlin data in figure 8. The case of R/d = 52 is quite
well predicted though the experiments display a somewhat greater[
circumferential variation than do the computations..
Qualitatively, one would expect this type-of difference to arise
with a Boussinesq viscosity model (BVM). Real turbulence is knownI to be highly sensitive to small amounts of streamline curvature,
heat transfer coefficients being augmented in boundary layers
developing on concave surfaces and damped on convex ones. BVMS do
not capture this sensitivity and It is to this failure that we may
attribute the differences shown in figure Ba. A similar behaviour
is also shown in figure Rb for a bend with R/d = 8.5. The
differences in Nusselt number between computation and experiment
on the outer half of the bend are now more marked, the computed
ilevels being nearly 40% below the data in places. This result may
reflect simply the deterioration in the model's ability to mimic
the turbulent transport processes as curvature effects become
progressively stronger. It should at least be noted, however,
that the experimenters had several difficulties with this tighter
bend. The stainless steel coil was fabricated from a straight
tube and, in bending, creasing occurred on the inside of the bend,
!stretching on the outside (with attendant modification of the
,tube's electrical resistivity) and some distortion of the
ross-section shape. -In. view of these departures in the

experiment from the idealized geometry and boundary conditions,Ifirm conclusions on this issue cannot be reached.

4. Conclusions

[ A semi-elliptic solving procedure combined with the parabolic
sublayer treatment adjacent to the pipe wall offers a
promising route for the numerical analysis of complex
three-dimensional flow in pipe bends with strong curvature.

* Although agreement is not complete, broadly satisfactory
correspondence has been demonstrated with the velocity data
of Enayet et al (1982) obtained in a tight 900 bend.

0 The present Boussinesq viscosity model leads to an
underestimate of the circumferential variation in heat
transfer coefficient in fully developed flow through a coil
(though for many engin.ering purposes the measure of
agreement achieved would be satisfactory). The differences
are believed to arise from the known insensitivity of BVMs to
streamline curvature. The introduction, in the future, of a
turbulence model based on second-moment closure should lead
to more satisfactory predictions.. . ... .. .

0his reduction in the size of the pressure array allowed us to increase
the nmter of radial nodes to 40 and the number of circumferential nodes
to 25. This refinement from the original 27 x 20 mash gave levels of
Pu %hidi differed by. at aest 1% frun those cbtained with the coarser iesh,

Sfigurellb.
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PSL - An Economical Approach to the Numerical Analysis

K of Near-Wall, Elliptic Flow

[
[

by
H. Iacovides and B.E. Launder

University of Manchester Institute of Science and Technology[Manchester M60 lQD, England

L
L

?[

Abstract

The paper points out that, in the numerical computation 6f elliptic
or three-dimensional turbulent flows, the neglect of pressure-variations
across the very thin viscosity affected region near the wall allows a
fine-Srid analysis of this sublayer without prohibitive penalties in
core or Computational time. The scheme has been successfully applied5 to the three-dimensional flow around a U-bend.
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1. Introduction

[In the numerical study of complex, two-dimensional turbulent

flows near walls, one commonly finds that a different approach

[to handling the near-wall low-Reynolds-number region (i.e. the

[Viscous sublayer and "buffer" layer) is adopted, depending
upon whether the flow as a whole is of boundary-layer or

L "recirculating" type. In the former case, because an

economical, once-through marching solution can be applied,

[the near-wall zone is often analysed by adopting a fine

grid to cover the low-Reynolds-number region. Such an

approach is rarely practicable in an elliptic flow, however,

because the coupling of the velocity and pressure fields

requires an iterative solution; this feature means not only

that computer times may typically be two orders of magnitude

[greater than for a boundary-layer study, but also that the
dependent variables must be stored over the whole solution

L domain. Because of the substantial core and computer time

requirements, the near-wall region is usually handled by way

Iof wall functions (1) in which wall adjacent nodes are

placed relatively far from the surface so that they lie in

the region of fully turbulent fluid. The wall functions

attempt to embody, through a mixture of analysis and experiment-

al data, the integrated effects of the near-wall sublayer; in

U this way, no substantial near-wall mesh refinement is needed.

This feature is crucial in keeping the overall core andI' ......
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computing time requirements to manageable levels and is the

reason why, despite the crudeness of the physical treatment,

wall functions are nearly universally adopted. The above

remarks apply with even greater force to three-dimensional

flows.

The problem with such a simple approach to the physics is

that it is not adequate to account for the diversity of the

phenomena displayed by turbulent flow near walls. There

are, for example, many situations where the velocity vector

parallel to the wall undergoes strong skewing across the

low-Reynolds-number region, a feature which no wall-function

approach appears to have mimicked successfully.

The purpose of the present note is to recommend a new

numerical practice Chat facilitates the use of

fine near-wall mesh in computing elliptic and three-dimension-

al flows. This development thus opens the way to more refined

modelling of the physics of the near-wall region than has

hitherto been employed.

|'
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I
i 2. The PSL Scheme and its Application

The PSL scheme is based on the idea that, while the flow as

a whole must be regarded as elliptic, there is a thin

I parabolic sublayer (whence the acronym) immediately adjacent

to the wall across which static pressure variations are

negligible or, in the case of highly-curved surfaces, where

[ the variation may be obtained by assuming radial equilibrium.

This parabolic sublayer is taken to extend over the whole of

[the low-Reynolds-number region where the turbulent transport

[ properties exhibit such a strongly non-linear variation.

If, as we have argued is desirable on physical grounds, a

S[ fine grid treatment is employed across this region, then

major simplifications may be made to the conventional,

[ incompressible elliptic treatment, (2). Our own implement-

-ation of the idea has been within the context of finite

volume procedures employing a staggered arrangement of

dependent variables, Fig. 1 (analogous simplifications can

clearly be adopted with an orthodox finite difference

=L method). Within the PSL:

I (i) the pressure does not require storing (it

is given by the pressure just outside the

I region);

I(i) thus, no Poisson or pressure-perturbation

equation has to be solved; A,

I
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I
(iii) the velocity component normal to the wall may be

obtained very rapidly by cell continuity rather

I than by solving the normal momentum equation.

Thus, referring to Fig.l, for a Cartesian

I mesh and a two-dimensional flow,

V(I,J) - (U(I-lJ)-U(I,J))6y/6x + V(I,J-l)

These are, of course, the classic boundary-layer simplifications

known for 80 years; what appears to be novel is their application

to a very thin sublayer in a shear flow that is overall not

analysable under the boundary-layer approximation. The adaptations

required to most elliptic solving schemes to incorporate the PSL

L treatment will be trivial. In the codes used at UMIST the

momentum equation (or equations) for the component(s) parallel

ito the wall are solved simultaneously over both the elliptic

region and the PSL; the velocity component normal to the wall

within the PSL is found next by applying continuity to the pressure

Lcells; thereafter, the momentum equation for this component is

solved over the elliptic region only. Finally the pressure or

. pressure-correctiou equation is solved over the elliptic region

with corresponding adjustments also being made to the velocity

field.

There is also often scope for reducing storage associated with

I velocity-component information. In many cases, at the expense

of somewhat more code reorganization, the solution can be

arranged so that velocities in the PSL are stored only on the

I
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I
3 row contiguous with the elliptic region and along two

1-dimensional columns of nodes (which are successively over-

K written), rather than in a full 2-dimensional array.

IA referee has queried the use of the PSL approach in the

[vicinity of a stagnation point where the variation of pressure
normal to the wall is relatively rapid. Perhaps the first

j thing to emphasize is that any errors associated with pressure

variations across the buffer region will affect coarse-grid

wall-function schemes at least as much as a PSL approach.

[Our experience at UMIST suggests in fact that even on the

axis of an impinging jet the PSL approximation can be applied

Lover most of the low Reynolds number region. Although in

our applications to date the PSL treatment has been applied

to the same number of cells in each column (viz Fig.l), this

L" practice is neither necessary nor optimal in some applications.

In the impinging jet, for example, a thin PSL at the stagnation

|" point could be expanded to cover the full height of the domain

once the jet had been deflected into a radial wall jet. Indeed

[a self-adjusting scheme for the number of nodes in the PSL at

[ any x-position could readily be devised.

The most important field of application of the approach is j
perhaps in three-dimensional flows describable by the partially

parabolic equations for there only the pressure field requires

33D storage. The scheme has been successfully applied by the

authors to the turbulent flow in a circular tube around a 9000 /
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K each radial st#no' of
bend. Nine nodes have been put in the parabolic sublayer.along/ We

IFor identical grid densities in the fully turbulent region,

[computing times are no longer (in fact somewhat less) than

with our previously used wall-function approach; core require-

ment is also little affected because most of this is

associated with the pressure field which (alone) has to be

I held on a three-dimensional array (and which is identical

for the two approaches since there are no pressure nodes

within the PSL). The PSL scheme has also been applied in

F high Reynolds number Zwninar flow around pipe bends where

again near the wall the velocity field undergoes very

,L rapid changes but the pressure is obtained adequately via

radial equilibriutn.

L
The scheme has since been adopted by two of our colleagues

who had hitherto been using a fine-grid low-Reynolds-number

Sapproach within two-dimensional fully elliptic treatments.

When there were no flow reversals in the near-wall layer,

the introduction of PSL reduced their computational times,

[ in one case by a factor of two and in the other by a factor

of three.e Benefits were much reduced when reverse flow

was present but itseems likely that these can be substantially

* restored by reorganizing the solution in the PSL so that the

direction of marching is always that indicated by the velocity

I at the outer edge of thissub-layer.

t t Their numerical results obtained with PSL are insignificantly
different from those given by the fully elliptic solution
using n identical mesh.
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3. Conclusion

The PSL approach allows a fine-grid resolution to be applied

to the near-wall sublayer with no significant increase in

5 computer time or storage, compared with a conventional wall-

function treatment. Because the former scheme facilitates

Ia better modelling of the turbulent transport processes, it

[is thought that in many cases it may supplant the latter.

[.
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